N91-28266

PRESENTATION 4.4.4

BUSINESS NOT AS USUAL

Presented to
Program Development and
Cultural Issues Panel
at the
Space Transportation Propulsion
Systems Symposium

June 27, 1990

Pratt & Whitney

Don Connell

CONCLUSION

Manage the problems together (Government/Contractors)

Don't resist cultural change

TYPICAL DESIGN SIMPLIFICATION IDEAS WHICH REDUCE COSTS

ELIMINATE BOOST PUMPS

ELIMINATE FAIL-OP IN CONTROL SYSTEM

ELIMINATE THROTTLING AND CLOSED LOOP CONTROL

LOWER CHAMBER PRESSURE

ELIMINATE POWER HEAD/DUAL PREBURNERS (GG CYCLE)

COMBUSTION CHAMBER DESIGN SIMPLIFICATION

BASELINE - 1A COMBUSTION CHAMBER

BASELINE - 1B COMBUSTION CHAMBER

CASTINGS VS. MACHINED AND WELDED FORGINGS

SSME Turbopump Volute

IR&D Cast Volute

Cost Savings of >10:1

FUNCTIONAL CHECKS

Aerojet Propulsion Division

Roy Michel

SCHLURE SERCUET

Propulsion Division

Two Thirds Of Total Life Cycle Cost Is Determined By The End Of Concept Design*

^{*} Richman Associates, Design To Cost Seminar, Aerojet 1977

Our Approach To The TCA: Maintain Flexibility

- Establish A Point Of Departure Design (a)
- Evaluate Competing Low Cost Designs/Approaches (b)
- Examine Technical And Process Issues And Alternatives (c)
- Select Final Approach Based On Rigorous Cost Comparisons (d)
- Demonstrate The Final Concept At MSFC (e)

Our Cost Model Embodies TQM

QFD Respond To Customer's Desire For:

Low Cost Design

Understanding Of Factors Affecting Cost

Juran Identify Avoidable And Unavoidable Costs

Evaluate, Early In The Design Process:

TQM Form: Touch Labor And Material Costs To Manufacture

The Hardware

SPC Fit: Manufacturing Process Yields

<u>Taguchi</u> Function: "Warranty" Costs - Reliability And Spares

Summary

- High Reliability And Low Cost Are Obtainable
 - Inherent In Design And Manufacturing Processes:

Fewer Parts Low Cost Materials Wider Margins

Advanced Processes Reduced Inspection Efficient Manufacturing

- Contractors Are Committed
- TQM is in
- Consortium + Government + Prime Contractors = Partnership
- Government Role is Key
 - Fix The Requirements
 - Avoid Gold Plating
 - Limit Specifications
 - Maintain Funding And Schedule

Low Cost Approaches To Engine Controller

- Modular, Flexible Architecture Results In 70% Decrease In Controller Life Cycle Cost
- · Standard Modules, Interfaces, Software
- Adaptable To Various Engine Requirements

Low Cost Approaches To Propellant Control Effector

- Electromechanical Activation
- Ox And Fuel Valve Commonality
- Integral Electronics
- Digital Control And Interface
- Integral Valve Position Resolver

Low Cost Approaches To Turbopump Design

- Two-Stage Pump
- Self-Compensating Hydrostatic Bearings
- · Cast Turbine Manifold
- Cast Pressure Vessel
- Integrally Machined Turbine Hub And Blades (Blisk)
- LCF And HEE-Resistant Turbines
 - No Coatings Or Platings
- Cast Impellers
- Reusable With Minimum Inspection And Refurb

Injector Assembly and Subscale Chambers Will Provide the Data Base for the 3-D Subscale Impinging Injector

Workhorse Chamber

Impinging Element Injector Offers Lower Cost and Acceptable Isp

Parameter		Baseline Swirt Coax Element	Alternative impinging Element
# Parts		2200	15
♦ Operations		133	67
Injection APPUEL	(Pal)	340	340
Injection &Poxe	(Pel)	515	340
Predicted Isp	(sec)	441.7	438.5

Concurrent Engineering Design Approach Addresses All Major Design Objectives

• Downstream Functions Actively Participated in The Design Process

Suppliers Producibility OA Reliability Safety ILS

- Approach To High Reliability Formulated
- Approach To Low Cost Formulated
- Cost Model Constructed

Ongoing Advanced Development Programs Are Focused On High Reliability And Low Cost

- Combustion Devices
 - Thrust Chamber Assembly
 - Gas Generator Assembly
- Hydrogen Turbopump Assembly
- Propellant Control Effector (GGA Valve)
- Engine Controller